朱天清 博士
教授 博導/碩導
數據科學學院副院長(科研)
電子信箱 E-mail:tqzhu@cityu.edu.mo
聯繫電話 Contact:+853-85902275
學歷
2014 計算機科學博士, 迪肯大學, 澳洲
2004 自動化學碩士, 武漢大學, 中國
2000 應用化學學士, 武漢大學, 中國
現任
澳門城市大學數據科學學院副院長
澳門城市大學數據科學學院教授,博導
曾任教科目
並行計算、大數據及應用
研究方向
人工智能安全、隱私保護、網絡空間安全
研究及出版
Books
Zhu, T., Zhou, W., Li, G., & Yu, P. (2017). Differential privacy and applications. In Advances in information security. Springer.
Liu, B., Zhou, W., Zhu, T., Xiang, Y., & Wang, K. (2018). Location privacy in mobile applications. In Advances in information security. Springer.
Refereed Journal Articles (Selected)
- Xu, H., Zhu, T., Zhang, L., Zhou, W., & Yu, P. S. (2023). Machine unlearning: A survey. ACM Computing Surveys, 56(1), 1–36.
- Hu, X., Zhu, T., Zhai, X., Zhou, W., & Zhao, W. (2023). Stabilization of Switched Logical Networks: Asynchronous Switching Control. IEEE Transactions on Knowledge and Data Engineering, 35(4), 4137–4150.
- Zhou, S., Zhu, T., Ye, D., Yu, X., & Zhou, W. (2023). Boosting Model Inversion Attacks with Adversarial Examples. IEEE Transactions on Dependable and Secure Computing.
- Chen, Huiqiang, Zhu, T., Zhang, T., Zhou, W., & Yu, P. S. (2023). Privacy and Fairness in Federated Learning: on the Perspective of Trade-off. ACM Computing Surveys.
- Zhang, Lefeng, Zhu, T., Zhang, H., Xiong, P., & Zhou, W. (2023). Fedrecovery: Differentially private machine unlearning for federated learning frameworks. IEEE Transactions on Information Forensics and Security.
- Sun, H., Zhu, T., Li, J., Ji, S., & Zhou, W. (2023). Attribute-Based Membership Inference Attacks and Defenses on GANs. IEEE Transactions on Dependable and Secure Computing.
- Zhu, C., Cheng, Z., Ye, D., Hussain, F. K., Zhu, T., & Zhou, W. (2023). Time-driven and Privacy-preserving Navigation Model for Vehicle-to-vehicle Communication Systems. IEEE Transactions on Vehicular Technology.
- Liu, C., Chen, H., Zhu, T., Zhang, J., & Zhou, W. (2023). Making DeepFakes more spurious: evading deep face forgery detection via trace removal attack. IEEE Transactions on Dependable and Secure Computing.
- Zhang, Lefeng, Zhu, T., Xiong, P., Zhou, W., & Philip, S. Y. (2022). A robust game-theoretical federated learning framework with joint differential privacy. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3333–3346.
- Liu, C., Zhu, T., Zhang, J., & Zhou, W. (2022). Privacy intelligence: A survey on image privacy in online social networks. ACM Computing Surveys, 55(8), 1–35.
- Ye, D., Zhu, T., Zhu, C., Zhou, W., & Philip, S. Y. (2022). Model-based self-advising for multi-agent learning. IEEE Transactions on Neural Networks and Learning Systems.
- Zhang, G., Liu, B., Zhu, T., Ding, M., & Zhou, W. (2022). Label-only membership inference attacks and defenses in semantic segmentation models. IEEE Transactions on Dependable and Secure Computing, 20(2), 1435–1449.
- Ye, D., Shen, S., Zhu, T., Liu, B., & Zhou, W. (2022). One parameter defense—defending against data inference attacks via differential privacy. IEEE Transactions on Information Forensics and Security, 17, 1466–1480.
- Hu, X., Zhu, T., Zhai, X., Wang, H., Zhou, W., & Zhao, W. (2022). Privacy Data Diffusion Modeling and Preserving in Online Social Network. IEEE Transactions on Knowledge and Data Engineering.
- Zhou, S., Liu, C., Ye, D., Zhu, T., Zhou, W., & Yu, P. S. (2022). Adversarial attacks and defenses in deep learning: From a perspective of cybersecurity. ACM Computing Surveys, 55(8), 1–39.
- Yang, M., Tjuawinata, I., Lam, K.-Y., Zhu, T., & Zhao, J. (2022). Differentially Private Distributed Frequency Estimation. IEEE Transactions on Dependable and Secure Computing.
- Zhang, L., Zhu, T., Hussain, F. K., Ye, D., & Zhou, W. (2022). Defend to defeat: Limiting information leakage in defending against advanced persistent threats. IEEE Transactions on Information Forensics and Security, 1–1.
- Zhang, Lefeng, Zhu, T., Xiong, P., Zhou, W., & Philip, S. Y. (2022). A Game-theoretic Federated Learning Framework for Data Quality Improvement. IEEE Transactions on Knowledge and Data Engineering.
- Liu, Y., Hao, X., Ren, W., Xiong, R., Zhu, T., Choo, K.-K. R., & Min, G. (2022). A blockchain-based decentralized, fair and authenticated information sharing scheme in zero trust internet-of-things. IEEE Transactions on Computers, 72(2), 501–512.
- Zhang, Lefeng, Zhu, T., Hussain, F. K., Ye, D., & Zhou, W. (2022). A Game-Theoretic Method for Defending Against Advanced Persistent Threats in Cyber Systems. IEEE Transactions on Information Forensics and Security, 18, 1349–1364.
- Liao, T., Lei, Z., Zhu, T., Zeng, S., Li, Y., & Yuan, C. (2021). Deep metric learning for k nearest neighbor classification. IEEE Transactions on Knowledge and Data Engineering, 35(1), 264–275.
- Zhang, Lefeng, Zhu, T., Xiong, P., Zhou, W., & Yu, P. S. (2021). More than privacy: Adopting differential privacy in game-theoretic mechanism design. ACM Computing Surveys (CSUR), 54(7), 1–37.
- Zhang, T., Zhu, T., Gao, K., Zhou, W., & Philip, S. Y. (2021). Balancing learning model privacy, fairness, and accuracy with early stopping criteria. IEEE Transactions on Neural Networks and Learning Systems.
- Hu, X., Zhu, T., Zhai, X., Zhou, W., & Zhao, W. (2021). Privacy data propagation and preservation in social media: A real-world case study. IEEE Transactions on Knowledge and Data Engineering.
- Wang, Z., Zhao, J., Hu, J., Zhu, T., Wang, Q., Ren, J., & Li, C. (2020). Towards personalized task-oriented worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 20(5), 2080–2093.
- Chivukula, A. S., Yang, X., Liu, W., Zhu, T., & Zhou, W. (2020). Game theoretical adversarial deep learning with variational adversaries. IEEE Transactions on Knowledge and Data Engineering, 33(11), 3568–3581.
- Zhang, T., Zhu, T., Li, J., Han, M., Zhou, W., & Yu, P. (2020). Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination. IEEE Transactions on Knowledge and Data Engineering.
- Ye, D., Zhu, T., Shen, S., & Zhou, W. (2020). A differentially private game theoretic approach for deceiving cyber adversaries. IEEE Transactions on Information Forensics and Security, 16, 569–584.
- Ye, D., Zhu, T., Shen, S., Zhou, W., & Philip, S. Y. (2020). Differentially private multi-agent planning for logistic-like problems. IEEE Transactions on Dependable and Secure Computing, 19(2), 1212–1226.
- Ye, D., Zhu, T., Zhou, W., & Philip, S. Y. (2019). Differentially private malicious agent avoidance in multiagent advising learning. IEEE Transactions on Cybernetics, 50(10), 4214–4227.
- Zhang, T., Zhu, T., Xiong, P., Huo, H., Tari, Z., & Zhou, W. (2019). Correlated differential privacy: Feature selection in machine learning. IEEE Transactions on Industrial Informatics, 16(3), 2115–2124.
- Xiao, R., Ren, W., Zhu, T., & Choo, K.-K. R. (2019). A mixing scheme using a decentralized signature protocol for privacy protection in bitcoin blockchain. IEEE Transactions on Dependable and Secure Computing, 18(4), 1793–1803.