Assistant Professor Chaoxi Niu


Dr. Chaoxi Niu

Assistant Professor Master Supervisor

Email:  cxniu@cityu.edu.mo
Tel: (853)85902423
Office address:  Room S401, Stanley Ho Building, City University of Macau (Taipa)

 

Educational experience 

2025 Doctor of Philosophy in Computer Science, University of Technology Sydney, Australia

2020 Master in Circuits and Systems, Lanzhou University, Lanzhou, China

2017 Bachelor in Electronic Information Science and Technology, Lanzhou University, Lanzhou, China

 

Incumbent 

Assistant Professor, Faculty of Data Science, City University of Macau 

 

Research interests

Graph Neural Networks, Anomaly detection and Continual Learning

 

Publications(*: Equal Contribution)

  1. Qiao, H.*, Niu, C.*, Chen, L., & Pang, G. (2025). AnomalyGFM: Graph foundation model for zero/few-shot anomaly detection. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2 (pp. 2326-2337). (CCF-A)
  2. Niu, C.*, Qiao, H*., Chen, C., Chen, L., & Pang, G. (2024). Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts. In Proceedings of the 34th International Joint Conference on Artificial Intelligence. (CCF-A)
  3. Xia, C., Niu, C., & Zhan, K. (2025). Hierarchical Consensus Network for Multiview Feature Learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 20, pp. 21617-21625). (CCF-A)
  4. Niu, C., Pang, G., Chen, L., & Liu, B. (2024). Replay-and-forget-free graph class-incremental learning: A task profiling and prompting approach. Advances in Neural Information Processing Systems37, 87978-88002. (CCF-A)
  5. NIU, C., Pang, G., & Chen, L. Graph continual learning with debiased lossless memory replay. (2024). In Proceedings of the 27th European Conference on Artificial Intelligence (ECAI 2024) Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024): Santiago de Compostela, Spain, October (pp. 19-24). (CCF-B)
  6. Niu, C., Pang, G., & Chen, L. (2024). Affinity uncertainty-based hard negative mining in graph contrastive learning. IEEE Transactions on Neural Networks and Learning Systems35(9), 11681-11691. (CCF-B)
  7. Niu, C., Pang, G., & Chen, L. (2023). Graph-level Anomaly Detection via Hierarchical Memory Networks. In Joint European conference on machine learning and knowledge discovery in databases (pp. 201-218). Cham: Springer Nature Switzerland. (CCF-B)
  8. Zhan, K., & Niu, C. (2021). Mutual teaching for graph convolutional networks. Future Generation Computer Systems115, 837-843. (CCF-C, Q1)
  9. Zhan, K., Niu, C., Chen, C., Nie, F., Zhang, C., & Yang, Y. (2018). Graph Structure fusion for multiview clustering. IEEE Transactions on Knowledge and Data Engineering31(10), 1984-1993. (CCF-A)