Assistant Professor Changlu Chen


Dr. Changlu Chen

Assistant Professor Master Supervisor

 

E-mail: clchen@cityu.edu.mo
Tel: (853)85902372
Office Address: Room S504, Stanley Ho Building, City University of Macau (Taipa)

 

Educational qualifications

2020 Doctor of Philosophy in Computer Science, University of Technology Sydney, Australia
2017 Master in Computer Science, Lanzhou University, Lanzhou, China
2013 Bachelor in Computer Science, Lanzhou University, Lanzhou, China

 

Incumbent

Assistant Professor, Faculty of Data Science, City University of Macau

 

Research Direction

Spatial-Temporal Forecasting; Traffic Forecasting; Time Series Analysis; Data Mining; Deep Learning, etc.

 

Research and publication

  • Chen, C., Liu, Y., Chen, L., & Zhang, C. (2024). Test-Time Training for Spatial-Temporal Forecasting. In Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) (pp. 463-471). Society for Industrial and Applied Mathematics. (CCF B)
  • Chen, C., Liu, Y., Chen, L., & Zhang, C. (2024, August). Multivariate Traffic Demand Prediction via 2D Spectral Learning and Global Spatial Optimization. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 72-88). Cham: Springer Nature Switzerland. (CCF B)
  • Chen, C., Liu, Y., Chen, L., & Zhang, C. (2022). Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting. IEEE Transactions on Neural Networks and Learning Systems34(10), 6913-6925. (CCF B IF= 14.25)
  • Chen, C., Liu, Y., Chen, L., & Zhang, C. (2023, May). RiskContra: A Contrastive Approach to Forecast Traffic Risks with Multi-Kernel Networks. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 263-275). Cham: Springer Nature Switzerland. (CCF C)
  • Zhan, K., Niu, C., Chen, C., Nie, F., Zhang, C., & Yang, Y. (2018). Graph structure fusion for multiview clustering. IEEE Transactions on Knowledge and Data Engineering31(10), 1984-1993. (CCF A)
  • Chen, C., Niu, C., Zhan, X., & Zhan, K. (2019). Generative approach to unsupervised deep local learning. Journal of Electronic Imaging28(4), 043005-043005.